

Tetrahedron 59 (2003) 7135-7139

TETRAHEDRON

Manganese(III) acetate based oxidation of substituted α' -position on cyclic α,β -unsaturated ketones

Cihangir Tanyeli* and Çigdem Iyigün

Department of Chemistry, Middle East Technical University, 06531 Ankara, Turkey

Received 24 April 2003; revised 20 June 2003; accepted 10 July 2003

Abstract—Selective oxidation of the tertiary α' -position on various 2-cyclopentenone, 2-cyclohexenone and aromatic ketone derivatives with manganese(III) acetate is described.

© 2003 Elsevier Ltd. All rights reserved.

1. Introduction

 α,β -Unsaturated ketones are among the most versatile building blocks in organic synthesis. Indeed, several natural products have been synthesized using enones as basic starting materials.¹ Selective oxidations yielding α' -hydroxy α,β -unsaturated cyclic ketones possess a central position in synthetic methodology.² Some analogues of those oxygenated compounds have interesting biological properties and are used in a number of medical preparations (e.g. monosaccharide carba-analogues as components for anti-viral medicines, hydroxycyclopentenones as anti-cancer drugs, etc.).³ The regioselective α' -oxidation of enones to α' -acetoxy enones constitutes a valuable procedure for manipulating a common functional group. In 1976, Williams and Hunter reported that the manganese(III) acetate oxidation of enones affords modest yields of α' -acetoxy enones.⁴ Watt et al. reinvestigated this procedure and obtained acceptable yields of the desired α' -acetoxy enones.⁵ So far, studies on the selective oxidation of cyclic enones in literature have been concerned with substrates that are unsubstituted at α' -positions except for one example of a steroidal substrate involving a tertiary α' -position. However in this exceptional study Ahmad et al. were failed to synthesize α' -acetoxy enones.⁶ The lack of a selective oxidation method for the α' -tertiary position of α,β -unsaturated cyclic ketones prompted us toward the development of a new method. In connection with our synthetic studies with Mn(OAc)₃,⁷ we attempted to prepare α' -acetoxy- α' alkyl α , β -unsaturated cyclic ketones by Mn(OAc)₃ oxidation. We previously published the results of Mn(OAc)3 oxidation of various α' -methyl α,β -unsaturated cyclic ketones.⁸ As an extension of the study, we are interested in the Mn(OAc)₃ oxidation of various α' -methyl, ethyl and

doi:10.1016/S0040-4020(03)01094-9

0040–4020/\$ - see front matter © 2003 Elsevier Ltd. All rights reserved.

benzyl substituted α , β -unsaturated cyclic ketones and some aromatic ketones. In this report we describe a highly efficient method for the synthesis of α' -acetoxy- α' -substituted α , β -unsaturated cyclic ketones.

2. Results and discussion

2.1. Oxidation of α' -substituted cyclopentenone and cyclohexenone derivatives

 α' -Substituted α,β-unsaturated cyclopentanones and cyclohexanones 1 were prepared from the corresponding α,βunsaturated cyclic ketones using slightly modified literature procedures,⁹ with LDA and corresponding alkyl halides at -78° C and subsequently allowed to react with Mn(OAc)₃. α' -Alkyl α,β-unsaturated cyclopentanones and cyclohexanones 1 (with dry benzene as the solvent) underwent a selective oxidation with Mn(OAc)₃ to afford products 2. Characterization of the products revealed the introduction of an acetoxy moiety at the α' -position (Scheme 1). The results are summarized in Table 1.

The reaction is thought to proceed through the formation of the Mn(III) enolate **3**, which loses Mn(II) upon one-electron oxidation to give the α' -keto radical **4**¹⁰ (Scheme 2). The

Scheme 1.

Keywords: enones; manganese and compounds; oxidation.

^{*} Corresponding author. Tel.: +90312210-32-22; fax: +90312210-12-80; e-mail: e-mail: tanyeli@metu.edu.tr

Entry	Reactant	Product	2	Yield (%)	Time (h)
1		OAc	2a	64	10
2		OAc	2b	76	10
3 ^a		OAc	2c	81	12
	syn/anti=1:1	syn/anti=1:1			
4		OAc	2d	78	10
5	O Ph Ph	O OAc	2e	47	28
6 ^a		OAc	2f	82	12
7	syn/anti=1:2	syn/anti=2:8	2g	53	12
8 ^a	Ph	O OAc Ph	2h ^b	77	5
9	cis/trans=1:9	OAc	2i	72	8
10		OAc	2ј	42	24
11	Ph	O OAc Ph	2k	51	18
12) 	OAc	21	68	8

Table 1. Selective oxidation of α' -substituted 2-cyclohexenone and 2-cyclopentenone derivatives with manganese(III) acetate in benzene

^a Syn/anti ratio was determined by ¹H NMR.

^b 2h was isolated as only one stereoisomer and its configuration was not determined.

resultant tertiary radical **4** is prone to further oxidation by another equivalent of $Mn(OAc)_3$. The final oxidation step provides α' -acetoxy α' -alkyl α,β -unsaturated ketones **2**.

The 2-cyclohexenone (entries 1-8) and 2-cyclopentenone (entries 9-12) derivatives afforded different yields in the

Mn(OAc)₃ oxidations. Among methyl substituted 2-cyclohexenone derivatives, the best yield was observed in the synthesis of 6-acetoxy-6-methyl-4-isopropyl-2-cyclohexen-1-one **2f** (entry 6). The substrates **1a**-**d** (entries 1-4) gave similar, acceptable yields (64–81%). However, there was a drastic decrease in yield for the diphenyl substituted derivative **2e** (entry 5, 47% yield). Although the reaction time was increased after 10 h to 28 h, there was no change in the yield of product formed.

The acetoxylation yield of 2g (entry 7) is lower than its methyl substituted derivative 2b (entry 2). Presumably this can be due to the sterical effect of ethyl group.

Among the oxidation of 2-cyclopentenone derivatives (entries 9–12), compound **1e** (entry 9) gave the best yield. The oxidation yields of α' -ethyl and benzyl substituted 3-methyl cyclopentenones **2j** and **2k** (entry10 and 11) are lower than α' -methyl substituted derivative **2i** (entry 9). Increasing the reaction time beyond 16 h failed to improve the yield of product formed.

2.2. $Mn(OAc)_3$ Oxidation of α' -substituted aromatic ketones

It is well known in the literature that Mn(OAc)₃ regioselectively oxidizes the aromatic ketones as well as enones.¹¹ In this study, we investigated the regioselective oxidation of α' -substituted aromatic ketones (Scheme 3). It can be seen from Table 2 that oxidation of aromatic ketones were completed in 18 h with 30–56% yields.

In conclusion, we have demonstrated a synthetically valuable and highly efficient oxidation method with manganese(III) acetate which can be applied to α' -substituted enones. In addition to its simplicity and mild reaction conditions, the method offers acceptable yields of products which makes it a useful and attractive process in the regioselective synthesis of tertiary alcohols.

3. Experimental

¹H NMR spectra were recorded in CDCl₃ on Bruker Spectrospin Avance DPX 400 spectrometer. Chemical shifts are given in ppm from tetramethylsilane. IR spectra were obtained using a Perkin–Elmer Model 1600 series FT-IR spectrometer and are reported in cm⁻¹. Mass spectra were recorded with Varian MAT 212. Thin layer chromatography (TLC) was performed on Merck plastic-backed silica gel plates. Compounds were visualized under an UV lamp. Column chromatography was performed using silica gel (Flash Silica 60, 32–63 µm). All the enones, 2-ethyl indanone **5a**, 2-acetyl tetralone **5b** and 2,3,4,5-tetramethyl-2-cyclopenten-1-one **1l** were purchased from Aldrich.

3.1. General procedure for the alkylation and benzylation of α , β -unsaturated ketones

To a stirred solution of freshly distilled diisopropylamine (4.0 mmol) in dry THF (5 mL) at 0°C under argon atmosphere, *n*-BuLi (8.82 mL, 2.45 M) was added. The

Scheme 2.

Scheme 3.

Table 2. Selective oxidation of α -substituted aromatic compounds.

Entry	Reactant	Product	6	Yield (%)	Time (h)
1	°	OAc	6a	30	18
2		OAc OAc	6b	46	18
3	°	O OAc	6c	56	18

resultant mixture was cooled down to -78° C and HMPA (4.0 mmol) was added and stirred for 30 min. Then the α,β -unsaturated ketone (4.0 mmol) was gradually added and stirred for an additional 30 min. Finally, alkyl halide (or benzyl halide) (4.2 mmol) was added and stirred for 1 h. Then the mixture was allowed to reach to room temperature and stirred for 12 h. The reaction mixture was diluted with an equal amount of saturated ammonium chloride and extracted with ethyl acetate (2×50 mL). The organic phase was dried over MgSO₄ and evaporated in vacuo. The crude product was separated by flash column chromatography using ethyl acetate/hexane as eluent.

Compounds **1a**,¹² **1b**,¹³ **1d**,¹⁴ **1e**,¹⁵ **1f**,¹⁶ **1i**^{12b} and **1k**¹⁷ were synthesized and all are in accordance with the literature data.

3.1.1. 3,5,6-Trimethyl-2-cyclohexen-1-one 1c. (0.45 g, 74%) as a colourless oil; $R_{\rm f}$ (EtOAc/hexane 1:4) 0.40; $\nu_{\rm max}$ (neat) 3427, 2964, 1678, 1455, 1379 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) (1:1 diastereomeric mixture) 5.78 (2×1H, s, =CH), 2.21–2.26 (2×1H, m, MeCHCO), 1.98–2.05 (2×2H, m, CMeCH₂), 1.87–1.92 (2×1H, m, MeCHCH₂), 1.85 (2×3H, s, =CMe), 1.60 (3H, d, J=

7 Hz, *Me*CHCO), 1.20 (3H, d, J=7 Hz, *Me*CHCO), 1.06 (3H, d, J=7 Hz, *Me*CHCH₂), 1.00 (3H, d, J=7 Hz, *Me*CHCH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 202.2, 160.5, 128.4, 126.2, 73.1, 71.6, 47.8, 39.6, 36.4, 24.5, 24.4, 20.3, 20.2, 14.5, 12.7; HRMS (EI): M⁺, found 138.1043, C₉H₁₄O requires 138.1045.

3.1.2. 6-Ethyl-3,5,5-trimethyl-2-cyclohexen-1-one 1g. (0.42 g, 62%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:3) 0.73; $\nu_{\rm max}$ (neat) 3421, 2967, 1680, 1440, 1376 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.71 (1H, s, =CH), 2.19 (1H, d, *J*=18 Hz, Me₂CCH_aH_b), 1.96 (1H, d, *J*=18 Hz, Me₂CCH_aH_b), 1.82 (3H, s, =CMe), 1.75–1.78 (1H, dd, *J*=4, 10 Hz, MeCH₂CH), 1.48–1.56 (1H, m, MeCH_aH_bCH), 1.33–1.41 (1H, m, MeCH_aH_bCH), 0.94 (3H, s, *Me*_aMe_bC), 0.89 (3H, s, Me_aMe_bC), 0.85 (3H, t, *J*=7 Hz, *Me*CH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 203.4, 158.2, 124.9, 59.4, 44.3, 36.4, 29.4, 24.4, 23.3, 19.4, 13.5; HRMS (EI): M⁺, found 166.1357, C₁₁H₁₈O requires 166.1358.

3.1.3. 6-Benzyl-3,5-dimethyl-2-cyclohexen-1-one 1h. (0.49 g, 58%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:8) 0.27; $\nu_{\rm max}$ (neat) 3012, 2961, 1680, 1493 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) (1:9 diastereomeric mixture) 7.23–7.28 (2H, m, *Ph*), 7.15–7.20 (3H, m, *Ph*), 5.87 (1H, s, =CH), 3.58 (1H, d, *J*=14 Hz, PhCH_aH_b), 2.95–2.98 (2H, m, PhCH₂), 2.43–2.50 (1H, m, PhCH₂CH), 2.29–2.34 (1H, m, MeCH), 1.92–2.08 (2H, m, MeCHCH₂), 1.91 (3H, s, major isomer =CMe), 1.89 (3H, s, minor isomer =CMe), 1.01 (3H, d, *J*=7 Hz, major isomer *Me*CH), 0.91 (3H, d, *J*=7 Hz, minor isomer *Me*CH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 201.2, 160.0, 140.2, 129.6, 129.3, 128.7, 127.3, 126.5, 126.0, 54.4, 37.4, 34.7, 31.5, 20.4, 14.4; HRMS (EI) M⁺, found 214.1356, C₁₅H₁₈O requires 214.1358.

3.1.4. 5-Ethyl-3-methyl-2-cyclopenten-1-one 1j. (0.33 g, 67%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:1) 0.63; $\nu_{\rm max}$ (neat) 2254, 1690, 1462 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.84 (1H, s, =CH), 2.63–2.69 (1H, dd, J=6, 18 Hz, =CMeCH_a-H_b), 2.25–2.30 (1H, m, MeCH₂CH), 2.19 (1H, d, J=18 Hz, =CMeCH_aH_b), 2.06 (3H, s, =CMe), 1.72–1.78 (1H, m, MeCH_aH_b), 1.30–1.38 (1H, m, MeCH_aH_b), 0.87 (3H, t, J=7 Hz, MeCH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 212.4, 177.8, 130.4, 53.2, 39.5, 24.6, 19.7, 12.0; HRMS (EI) M⁺, found 124.0887, C₈H₁₂O requires 124.0888.

3.2. General procedure for the $Mn(OAc)_3$ oxidations of α' -alkyl α,β -unsaturated ketones

A mixture of Mn(OAc)₃ (3.25 g, 14.0 mmol) in benzene (150 mL) was refluxed for 45 min using a Dean-Stark trap. Then, the mixture was cooled to room temperature and the α' -alkyl α,β -unsaturated ketone (7.0 mmol) was gradually

added. The mixture was allowed to reflux until the dark brown colour disappeared (also monitored by TLC). The reaction mixture was diluted with an equal amount of ethyl acetate and the organic phase was washed with 1N HCl (3×50 mL), followed by saturated NaHCO₃ (3×50 mL) and brine (2×50 mL). The organic phase was dried over MgSO₄ and evaporated in vacuo. The crude product was separated by flash column chromatography using ethyl acetate/hexane as eluent.

3.2.1. 6-Acetoxy-3,6-dimethyl-2-cyclohexen-1-one 2a. (0.81 g, 64%) as a colourless oil; $R_{\rm f}$ (EtOAc/hexane 1:2) 0.22; $\nu_{\rm max}$ (neat) 3342, 2924, 1740, 1678, 1436, 1372, 1251, 1153, 1093, 1025 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.83 (1H, s, CH=), 2.77–2.85 (1H, m, =CMeCH_aH_b), 2.26–2.41 (2H, m, CMeOAcCH₂), 1.99 (3H, s, *Me*CO₂), 1.89 (3H, s, =CMe), 1.81–1.86 (1H, m, =CMeCH_aH_b), 1.36 (3H, s, COAcMe); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 195.9, 170.0, 160.9, 125.5, 80.4, 32.4, 30.2, 24.6, 22.2, 21.9; HRMS (EI): M⁺, found 182.0940, C₁₀H₁₄O₃ requires 182.0943.

3.2.2. 6-Acetoxy-3,5,5,6-tetramethyl-2-cyclohexen-1-one **2b.** (1.12 g, 76%) as a white solid, mp 82–85°C; $R_{\rm f}$ (EtOAc/ hexane 1:3) 0.25; $\nu_{\rm max}$ (neat) 3432, 3017, 2975, 2253, 1737, 1686, 1639, 1436, 1372, 1248, 1217 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.70 (1H, s, CH=), 2.45 (1H, d, J=18 Hz, CMe₂CH_aH_b), 1.90 (3H, s, MeCO₂), 1.79 (1H, d, J= 18 Hz, CMe₂CH_aH_b), 1.77 (3H, s, =CMe), 1.36 (3H, s, COAcMe), 1.02 (3H, s, CMe_aMe_b), 0.80 (3H, s, CMe_aMe_b); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 199.1, 172.0, 158.4, 125.5, 87.7, 46.5, 42.8, 26.2, 26.1, 24.8, 23.7, 16.0; HRMS (EI): M⁺, found 210.1255, C₁₂H₁₈O₃ requires 210.1256.

3.2.3. 6-Acetoxy-3,5,6-trimethyl-2-cyclohexen-1-one 2c. (1.11 g, 81%) as a colourless oil; $R_{\rm f}$ (EtOAc/hexane 1:5) 0.22; $\nu_{\rm max}$ (neat) 3397, 2253, 1735, 1676, 1380, 1257 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) (1:1 diastereomeric mixture) 5.83 (1H, s, =CH), 5.76 (1H, s, =CH), 3.09–3.18 (2×1H, m, MeCH), 2.21–2.62 (2×2H, m, CMeCH₂), 2.01 (3H, s, $MeCO_2$), 1.97 (3H, s, $MeCO_2$), 1.88 (3H, s, =CMe), 1.84 (3H, s, =CMe), 1.49 (3H, s, COAcMe), 1.19 (3H, s, COAcMe), 0.99 (3H, d, J=7 Hz, MeCH), 0.93 (3H, d, J=7 Hz, MeCH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 196.4, 196.0, 169.8, 169.5, 160.3, 158.1, 125.1, 123.6, 83.4, 82.6, 38.3, 37.1, 33.6, 29.7, 24.1, 23.8, 21.3, 18.8, 16.4, 14.7, 14.0; m/z (EI) 198 (13), 197 (100), 152 (13), 139 (19), 137 (42); HRMS (EI): M⁺, found 196.1105, C₁₁H₁₆O₃ requires 196.1100.

3.2.4. 6-Acetoxy-4,4,6-trimethyl-2-cyclohexen-1-one 2d. (1.07 g, 78%) as a colourless oil; $R_{\rm f}$ (EtOAc/hexane 1:3) 0.27; $\nu_{\rm max}$ (neat) 3535, 3155, 2853, 1736, 1689, 1464, 1377 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 6.52 (1H, d, *J*=10 Hz, =CH_β), 5.81 (1H, d, *J*=10 Hz, =CH_α), 2.62 (1H, d, *J*= 14 Hz, CH_aH_b), 1.90 (3H, s, *Me*CO₂), 1.79 (1H, d, *J*=14 Hz, CH_aH_b), 1.46 (3H, s, *Me*COAc), 1.16 (3H, s, *CMe_aMe_b*), 1.14 (3H, s, CMe_aMe_b); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 195.3, 170.5, 157.6, 126.4, 84.3, 45.6, 34.6, 29.6, 25.2, 15.3, 14.5; *m/z* (EI) 198 (14), 197 (100), 195 (19), 139 (13), 137 (37); HRMS (EI): M⁺, found 196.1103, C₁₁H₁₆O₃ requires 196.1100.

3.2.5. 6-Acetoxy-6-methyl-4,4-diphenyl-2-cyclohexen-1one 2e. (1.05 g, 47%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:4) 0.26; ν_{max} (neat) 3717, 3155, 2926, 1709, 1462, 1363, 1095 cm⁻¹; δ_{H} (400 MHz, CDCl₃) 7.32–7.11 (2×5H and 1H, m, CPhPh and =CH_β), 6.21 (1H, d, *J*=10 Hz, =CH_α), 3.66 (1H, d, *J*=14 Hz, CH_aH_b), 2.75 (1H, d, *J*=14 Hz, CH_aH_b), 1.88 (3H, s, *Me*CO₂), 0.97 (3H, s, *Me*COAc); δ_{C} (100.6 MHz, CDCl₃) 195.6, 170.2, 154.4, 147.3, 129.1, 128.9, 128.3, 127.9, 127.5, 127.2, 127.0, 80.2, 50.3, 45.3, 24.2, 21.7; HRMS (EI): M⁺, found 320.1412, C₂₁H₂₀O₃ requires 320.1413.

3.2.6. 6-Acetoxy-6-methyl-4-isopropyl-2-cyclohexen-1one 2f. (1.21 g, 82%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:4) 0.17; ν_{max} (neat) 3405, 2960, 2867, 2251, 1709, 1674, 1460 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) (8:2 diastereometric mixture) (major isomer) 6.69 (1H, dd, J=10, 4 Hz, $=CH_{\beta}$), 5.96 (1H, d, J=10 Hz, $=CH_{\alpha}$), 2.49–2.53 (1H, m, =CHCH), 2.42–2.44 (1H, m, CHMe₂), 1.99–2.07 (2H, m, CH₂), 1.93 (3H, s, MeCO₂), 1.47 (3H, s, MeCOAc), 0.87 (2×3H, d, J=7 Hz, CHMe₂); (minor isomer) 6.69 (1H, dd, J=10, 4 Hz, $=CH_{\beta}$), 5.96 (1H, d, J=10 Hz, $=CH_{\alpha}$), 2.44– 2.48 (1H, m, =CHCH), 2.42-2.44 (1H, m, CHMe₂), 1.99-2.07 (2H, m, CH₂), 1.95 (3H, s, MeCO₂), 1.49 (3H, s, *Me*COAc), 0.89 (2×3H, d, J=7 Hz, CHMe₂); δ_{C} (100.6 MHz, CDCl₃) (major isomer) 195.4, 170.2, 152.1, 128.3, 80.8, 40.2, 37.1, 31.6, 21.7, 21.0, 19.6, 19.3; (minor isomer) 191.4, 169.2, 150.3, 125.6, 80.9, 41.2, 37.5, 30.6, 21.8, 21.4, 19.7, 19.1; HRMS (EI): M⁺, found 210.1256, C₁₂H₁₈O₃ requires 210.1256.

3.2.7. 6-Acetoxy-6-ethyl-3,5,5-trimethyl-2-cyclohexen-1one 2g. (0.83 g, 53%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:4) 0.22; $\nu_{\rm max}$ (neat) 3421, 2967, 1735, 1660, 1440, 1376 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.11 (1H, s, =CH), 2.47 (1H, d, J=18 Hz, $CH_{\rm a}$ H_b), 2.31 (1H, d, J=18 Hz, $CH_{\rm a}$ H_b), 2.13–2.19 (2H, m, MeCH₂), 2.07 (3H, s, MeCO₂), 1.88 (3H, s, =CMe), 1.07 (6H, s, Me_2 C), 0.87 (3H, t, J=7 Hz, MeCH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 208.0, 171.1, 158.1, 124.9, 81.3, 59.4, 47.3, 37.4, 30.0, 27.8, 21.1, 19.2, 13.7; HRMS (EI): M⁺, found 224.1416, C₁₃H₂₀O₃ requires 224.1413.

3.2.8. 6-Acetoxy-6-benzyl-3,5-dimethyl-2-cyclohexen-1one 2h. (1.47 g, 77%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:5) 0.31; $\nu_{\rm max}$ (neat) 3012, 2961, 1730, 1652, 1493 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) (only one isomer was isolated) 7.19– 7.26 (3H, m, *Ph*), 7.09 (2H, d, *J*=6 Hz, *Ph*), 5.93 (1H, s, =CH), 3.58 (1H, d, *J*=14 Hz, PhCH_aH_b), 3.19 (1H, d, *J*= 14 Hz, PhCH_aH_b), 2.80–2.83 (1H, m, MeCH), 2.44–2.50 (1H, dd, *J*=18, 5 Hz, CH_aH_b), 2.28–2.34 (1H, dd, *J*=18, 5 Hz, CH_aH_b), 2.05 (3H, s, *Me*CO₂), 1.93 (3H, s, =CMe), 0.95 (3H, d, *J*=7 Hz, *Me*CH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 194.5, 170.2, 159.1, 135.3, 130.4, 128.2, 126.9, 125.1, 85.8, 40.3, 37.6, 35.0, 24.2, 21.5, 15.0; *m/z* (EI) 274 (17), 273 (100), 214 (8), 213 (47); HRMS (EI) M⁺, found 272.1401, C₁₇H₂₀O₃ requires 272.1413.

3.2.9. 5-Acetoxy-3,5-dimethyl-2-cyclopenten-1-one 2i. (0.85 g, 72 %) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:4) 0.17; $\nu_{\rm max}$ (neat) 3018, 2400, 1735, 1672, 1521 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.75 (1H, s, =CH), 2.80 (1H, d, *J*= 18 Hz, CH_aH_b), 2.32 (1H, d, *J*=18 Hz, CH_aH_b), 1.88 (3H, s, *Me*CO₂), 1.82 (3H, s, =CMe), 1.16 (3H, s, *Me*COAc); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 205.4, 173.1, 170.2, 127.8, 81.4, 46.3,

30.1, 23.8, 21.3, 20.0; HRMS (EI) M^+ , found 168.0782, $C_9H_{12}O_3$ requires 168.0786.

3.2.10. 5-Acetoxy-5-ethyl-3-methyl-2-cyclopenten-1-one 2j. (0.54 g, 42%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:4) 0.35; $\nu_{\rm max}$ (neat) 2254, 1764, 1709, 1462 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 5.88 (1H, s, =CH), 2.87 (1H, d, J= 18 Hz CH_aH_b), 2.51 (1H, d, J=18 Hz CH_aH_b), 2.07 (3H, s, MeCO₂), 1.99 (3H, s, =CMe), 1.55–1.75 (2H, m, MeCH₂), 0.84 (3H, t, J=7 Hz, MeCH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 205.4, 173.2, 170.3, 128.8, 84.2, 43.7, 30.0, 23.0, 21.3, 8.0; HRMS (EI) M⁺, found 182.0942, C₁₀H₁₄O₃ requires 182.0943.

3.2.11. 5-Acetoxy-5-benzyl-3-methyl-2-cyclopenten-1one 2k. (0.87 g, 51%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:3) 0.31; $\nu_{\rm max}$ (neat) 2254, 1732, 1704, 1469 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.02–7.24 (5H, m, *Ph*), 5.80 (1H, s, =CH), 2.70–2.77 (2H, 2d overlapped, *J*=18 Hz, PhCH_a- $H_{\rm b}$), 2.20–2.25 (2H, 2d overlapped, *J*=14 Hz, CH_aH_b), 2.03 (3H, s, *Me*CO₂), 1.97 (3H, s, =CMe); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 212.3, 178.5, 174.4, 139.2, 130.3, 129.8, 129.4, 128.6, 128.3, 126.2, 84.1, 38.4, 35.7, 20.1, 19.3; HRMS (EI) M⁺, found 244.1102, C₁₅H₁₆O₃ requires 244.1100.

3.2.12. 5-Acetoxy-2,3,4,5-tetramethyl-2-cyclopenten-1one 2l. (0.93 g, 68%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:4) 0.34; $\nu_{\rm max}$ (neat); 2268, 1740, 1715, 1478 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) (9:1 diastereomeric mixture) (major isomer) 2.73–2.75 (1H, m, MeCH), 1.68 (3H, s, *Me*CO₂), 1.63 (3H, s, Me_{α} C=), 1.48 (3H, s, Me_{β} C=), 0.88 (3H, s, *Me*COAc), 0.82 (3H, d, *J*=8 Hz, *Me*CH); (minor isomer) 2.34–2.36 (1H, m, MeCH), 1.70 (3H, s, *Me*CO₂), 1.65 (3H, s, Me_{α} C=), 1.48 (3H, s, Me_{β} C=), 1.04 (3H, s, *Me*COAc), 0.74 (3H, d, *J*=8 Hz, *Me*CH); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) (major isomer) 204.5, 169.8, 167.9, 133.0, 83.4, 45.4, 21.3, 19.4, 14.6, 11.9, 8.4; (minor isomer) 204.4, 170.1, 168.5, 132.5, 82.2, 49.6, 24.4, 21.1, 15.1, 12.8, 8.3; HRMS (EI) M⁺, found 196.1099, C₁₁H₁₆O₃ requires 196.1100.

3.2.13. 2-Acetoxy-2-ethyl-indanone 6a. (0.37 g, 30%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:4) 0.31; $\nu_{\rm max}$ (neat) 3410, 3019, 1724, 1609, 1466, 1257 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 7.71 (1H, d, *J*=8 Hz, *Ar*), 7.53 (1H, t, *J*=8 Hz, *Ar*), 7.30–7.33 (2H, m, *Ar*), 3.35 (1H, d, *J*=17 Hz, CH_aH_b), 3.15 (1H, d, *J*=17 Hz, CH_aH_b), 1.63–1.72 (1H, m, MeCH_aH_b), 0.87 (3H, t, *J*=7 Hz, *Me*CH₂); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 202.8, 170.4, 149.8, 135.6, 135.3, 128.1, 126.2, 124.7, 85.1, 37.9, 30.1, 21.2, 8.0; *m/z* (EI) 220 (15), 219 (100), 160 (6), 159 (9); HRMS (EI) M⁺, found 218.0937, C₁₃H₁₄O₃ requires 218.0943.

3.2.14. 2-Acetoxy-2-acetyl-1-tetralone 6b. (0.79 g, 46%) as a colourless oil, $R_{\rm f}$ (EtOAc/hexane 1:4) 0.41; $\nu_{\rm max}$ (neat) 2254, 1794, 1709, 1662, 1363, 1095, 910, 753, 715 cm⁻¹; $\delta_{\rm H}$ (400 MHz, CDCl₃) 8.58 (1H, d, *J*=8 Hz, *Ar*), 8.20 (1H, d, *J*=8 Hz, *Ar*), 7.35–7.65 (2H, m, *Ar*), 2.79–3.02 (4H, m, CH₂CH₂), 2.26 (3H, s, *Me*CO₂), 2.23 (3H, s, *Me*CO); $\delta_{\rm C}$ (100.6 MHz, CDCl₃) 210.3, 204.2, 198.7, 162.6, 143.6, 134.4, 129.0, 127.5, 112.5, 68.4, 32.5, 30.1, 26.3, 25.1; *m/z* (EI) 199 (42), 190 (14), 189 (100), 147 (17); HRMS (EI) M⁺, found 246.0902, C₁₄H₁₄O₄ requires 246.0892.

3.2.15. 2-Acetoxy-2-methyl-tetralone 6c. (0.86 g, 56%) as

a white solid, mp 258–260°C; R_f (EtOAc/hexane 1:3) 0.50; ν_{max} (neat); δ_H (400 MHz, CDCl₃) 8.00 (1H, d, J=8 Hz, Ar), 7.41 (1H, t, J=8 Hz, Ar), 7.26 (1H, t, J=8 Hz, Ar), 7.15 (1H, d, J=8 Hz, Ar), 2.89–2.99 (3H, m, $CH_2CH_aH_bCMeOAc$), 2.00 (3H, s, $MeCO_2$), 1.97–1.99 (1H, m, CH₂CH_aH_bCMeOAc), 1.47 (3H, s, MeCOAc); δ_C (100.6 MHz, CDCl₃) 195.2, 170.1, 142.4, 134.0, 131.6, 129.0, 128.8, 127.4, 81.3, 33.4, 27.3, 22.0, 21.7; HRMS (EI) M⁺, found 218.0941, C₁₃H₁₄O₃ requires 218.0943.

Acknowledgements

We thank the Turkish Scientific and Technical Research Council for a grant [no. TBAG-2244 (102T169)], Turkish State Planning Organization for a grant no. BAP-07-02-DPT-2002 K120540-04.

References

- Schapiro, V.; Cavalli, G.; Scoane, G. A.; Faccio, R.; Mombru, A. W. Tetrahedron: Asymmetry 2002, 13, 2453–2459.
- (a) Oppolzer, W.; Mahalanabis, K. K. *Tetrahedron Lett.* 1975, 3411–3414. (b) Polonsky, J. *Forts. Chem. Org. Naturst.* 1986, 47, 221–222.
- Paju, A.; Kanger, T.; Pehk, T.; Müürisepp, A. M.; Lopp, M. *Tetrahedron: Asymmetry* 2002, 13, 2439–2448.
- Williams, G. J.; Hunter, N. R. Can. J. Chem. 1976, 54, 3830–3832.
- (a) Dunlap, N. K.; Sabol, M. R.; Watt, D. S. *Tetrahedron Lett.* 1984, 25, 5839–5842. (b) Demir, A. S.; Gross, R. S.; Dunlap, N. K.; Hashemi, A. B.; Watt, D. S. *Tetrahedron Lett.* 1986, 27, 5567–5570. (c) Jeganathan, A.; Richardson, S. K.; Watt, D. S. *Synth. Commun.* 1989, 19, 1091–1100. (d) Gross, R. S.; Kawada, K.; Kim, M.; Watt, D. S. *Synth. Commun.* 1989, 19, 1127–1135.
- Ahmad, M. S.; Ahmad, S. Z.; Ansai, I. A. J. Chem. Res. (S) 1984, 374–375.
- (a) Tanyeli, C.; Demir, A. S.; Dikici, E. *Tetrahedron:* Asymmetry **1996**, 7, 2399–2402. (b) Tanyeli, C.; Sezen, B. *Tetrahedron Lett.* **2000**, 41, 7973–7976. (c) Tanyeli, C.; Özdemirhan, D.; Sezen, B. *Tetrahedron* **2002**, 58, 9983–9988.
- Tanyeli, C.; Sezen, B.; İyigun, Ç.; Elmalı, O. *Tetrahedron Lett.* 2001, 42, 6397–6399.
- 9. Piers, E.; Wai, J. S. M. Can. J. Chem. 1994, 72, 146-157.
- Snider, B. B.; Kiselgof, E. Y. Tetrahedron 1996, 52, 6073–6084.
- Demir, A. S.; Camkerten, N.; Akgun, H.; Tanyeli, C.; Mahasneh, A. S.; Watt, D. S. Synth. Commun. 1990, 20, 2279–2290.
- (a) Lacey, R. N. J. Chem. Soc. **1960**, 1639–1648. (b) Ponaras, A. A.; Zaim, O.; Pazo, Y.; Ohannesian, L. J. Org. Chem. **1988**, 53, 1110–1112.
- Mouk, R. W.; Patel, K. M.; Reusch, W. *Tetrahedron* 1975, *31*, 13–19.
- Smith, H. A.; Huff, B. J. L.; Powers, W. J.; Caine, D. J. Org. Chem. 1967, 32, 2851–2856.
- Bunce, R. A.; Taylor, V. L.; Holt, E. M. J. Org. Chem. 1989, 54, 5804–5811.
- Coxon, J. M.; Hydes, G. J.; Steel, P. J. *Tetrahedron* 1985, *41*, 5213–5217.
- 17. Cheng, W. C.; Kurth, M. J. J. Org. Chem. 2002, 67, 4387-4391.